
DATASHEET

GENERAL PURPOSE SOLID STATE RELAY 8PIN DIP 2-CHANNEL TYPE FORM A SSR

Features

- •Compact 8-pin DIP size
- •Applicable for 2 Form A use as well as two independent 1Form A use
- · Controls low-level analog signals
- · High sensitivity and high speed response
- •Low-level off state leakage current of max. 1uA
- Wide operating temperature range of -40°C to 85°C
- High isolation voltage between input and output (Viso = 5000 Vrms)
- UL 1577 + cUL approved (No. E214129)
- VDE approved (No. 40028391)

Pin Configuration

1, 3 LED Anode

2, 4 LED Cathode

8, 7, 6, 5 MOSFET

Description

The EL840A and EL860A are solid state relays containing an AlGaAs infrared LEDs on the light emitting side (input side) optically coupled to a high voltage output detector circuit. The detector consists of a photovoltaic diode array and MOSFETs on the output side. The dual channel configuration is equivalent to 1 form A EMR. They are packaged in 8 pin DIP and available in surface mount SMD option.

Applications

- High-speed inspection machines
- Telephones equipment
- •Computer

Absolute Maximum Ratings (T_A=25 °C, unless otherwise specified)

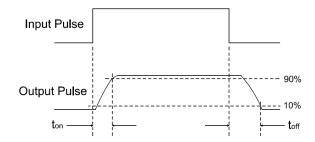
Parameter		Currely of	Rat	Rating	
	Parameter	Symbol ——	EL840A	EL860A	
Input	Forward Current	l _F	50	0	mA
	Reverse Voltage	V_R	5	5	V
	Peak Forward Current*1	I _{FP}	1		Α
	Power Dissipation	P_{in}	7!	5	mW
Output	Break Down Voltage	V_{L}	400	600	V
	Continuous Load Current	lμ	120	50	mA
	Pulse Load Current*2	I _{LPeak}	0.3	0.15	Α
	Power Dissipation	P _{out}	80	00	mW
Total Power Dissipation		P_{T}	85	mW	
Isolation Voltage*3		V_{iso}	500	Vrms	
Storage Temperature		T _{STG}	-40 to 125		°C
Operating Temperature		T_OPR	-40 to	°C	
Soldering Temperature*4		T _{SOL}	26	°C	

Notes:

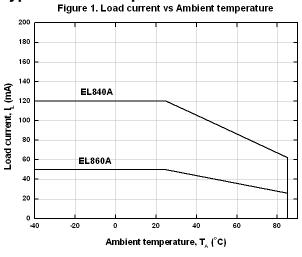
^{*1.} f =100Hz, Duty Cycle = 0.1%

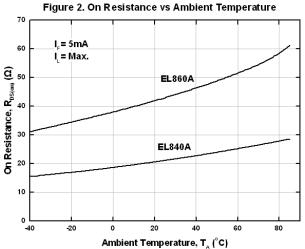
^{*2.} A connection: 100ms (1 shot), $V_L = DC$

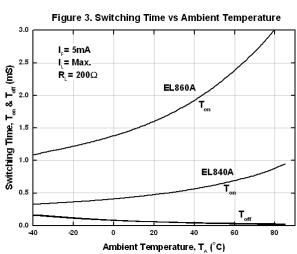
^{*3.} AC for 1 minute, R.H. = $40 \sim 60\%$ R.H. In this test, pins 1, 2 are shorted together, and pins 3, 4 are shorted together.

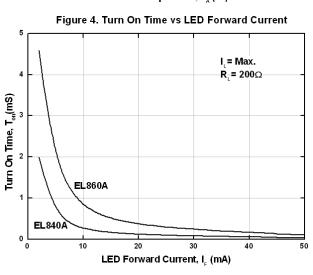

^{*4.} For 10 seconds

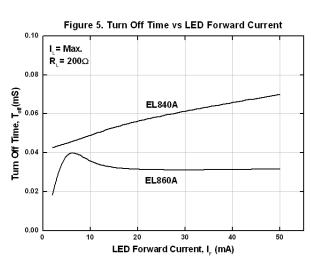
Electro-Optical Characteristics (T_A=25 °C)

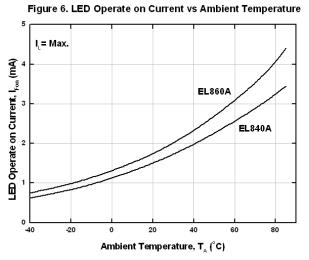
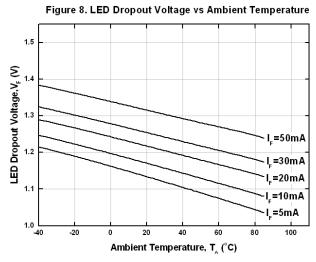
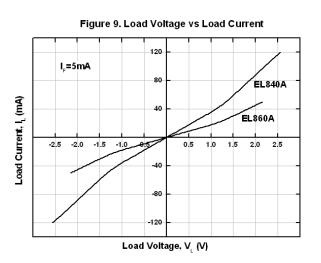
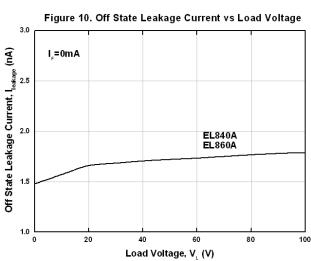

	Parameter		Symbol	Condition	Min.	Тур.	Max.	Unit
lancit	Forward Voltage		V_{F}	$I_F = 10 \text{mA}$	-	1.18	1.5	V
Input	Reverse Current		I_{R}	$V_R = 5V$	-	-	1	μΑ
	Off State leakage	e Current	l _{leak}	$I_F = 0mA$, $V_L = Max$.	-	-	1	μΑ
	On Resistance	EL840A	R _{d(ON)}	$I_F = 10$ mA, $I_L = $ Max. t = 1s	-	20	30	Ω
Output		EL860A			-	40	70	
	Output	EL840A	C	$V_L = 0V$, $f = 1MHz$		45	-	pF
	Capacitance	EL860A	C_{out}		-	30	-	
	LED turn on	EL840A	. 1	I _L = Max.		3.0	5	- mA
	Current	EL860A	- I _{F(on)}		-	3.0	5	
	LED turn off	EL840A	$I_{F(off)}$	I _L = Max.	0.4	3.0	-	- mA
	current	EL860A			0.4	3.0	-	
	Turn On Time	EL840A	T_{on}	$I_F = 10 \text{ mA}, I_L = \text{Max}.$ $R_L = 200\Omega$,		0.4	3	ms
Transfer		EL860A				1.4	3	
Characteristics	Turn Off Time	EL840A	T _{off}			0.05	0.5	- ms
		EL860A				0.05	0.5	
	Isolation Resistance	R_{I-O}	V	_{I-O} = 500V DC	5×10 ¹⁰		_	Ω
	Isolation Capacitance	C _{I-O}	V :	= 0V, f = 1MHz	1.5	-	-	pF

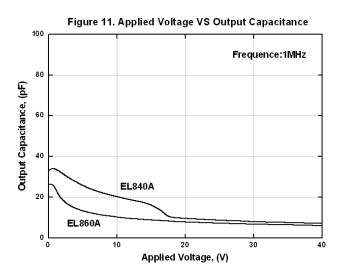

Turn on/Turn off Time






Typical Electro-Optical Characteristics Curves


Figure 7. LED Turn off Current vs Ambient Temperature

| Value | Value

Order Information

Part Number

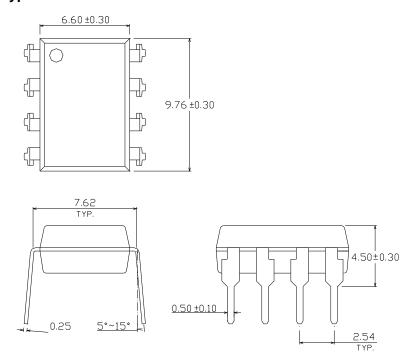
EL8XXA(Y)(Z)-V

Note:

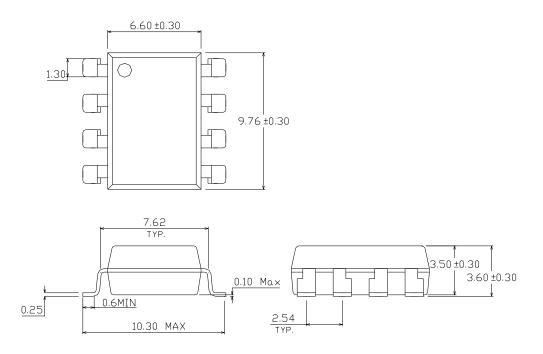
XX = Part No. (40 or 60)

Y = Lead form option (S1, or none)

Z = Tape and reel option (TA, TB, TU, TD or none).

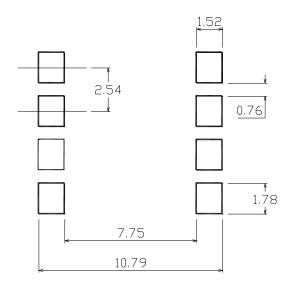

V = VDE safety approved option

Option	Description	Packing quantity
None	Standard DIP-8	45 units per tube
S1 (TA)	Surface mount lead form (low profile) + TA tape & reel option	1000 units per reel
S1 (TB)	Surface mount lead form (low profile) + TB tape & reel option	1000 units per reel

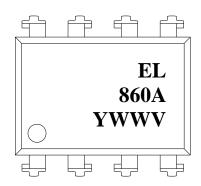


Package Dimension (Dimensions in mm)

Standard DIP Type



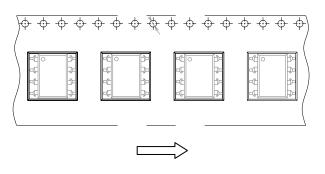
Option S1 Type

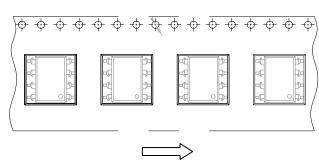


Recommended Pad Layout for Surface Mount Leadform

Device Marking

Notes

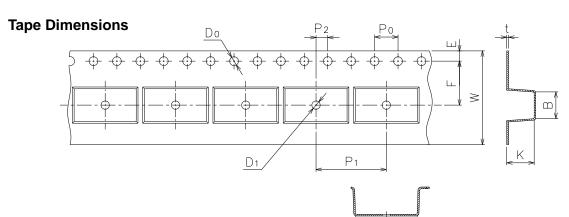

EL denotes Everlight 860A denotes Part Number Y denotes 1 digit Year code WW denotes 2 digit Week code V denotes VDE option

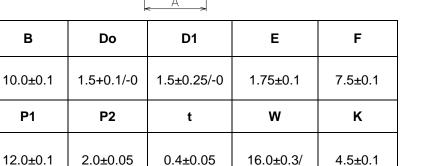


Tape & Reel Packing Specifications

Option TA

Direction of feed from reel


Α


10.4±0.1

Po

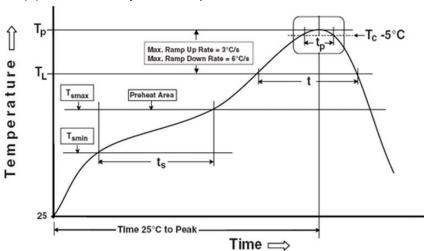
 4.0 ± 0.1

Direction of feed from reel

Dimension No.

Dimension(mm)

Dimension No.


Dimension(mm)

Precautions for Use

1. Soldering Condition

1.1 (A) Maximum Body Case Temperature Profile for evaluation of Reflow Profile

Note:

Preheat

Temperature min (T_{smin})

Temperature max (T_{smax})

Time $(T_{smin} \text{ to } T_{smax}) (t_s)$

Average ramp-up rate $(T_{smax} to T_p)$

Other

Liquidus Temperature (T_L)

Time above Liquidus Temperature (t L)

Peak Temperature (T_P)

Time within 5 °C of Actual Peak Temperature: T_P - 5°C

Ramp- Down Rate from Peak Temperature

Time 25°C to peak temperature

Reflow times

Reference: IPC/JEDEC J-STD-020D

150 °C

200°C

60-120 seconds

3 °C/second max

217 °C

60-100 sec

260°C

30 s

6°C /second max.

8 minutes max.

3 times

DATASHEET GENERAL PURPOSE SOLID STATE RELAY 8PIN DIP 2-CHANNEL TYPE FORM A SSR

Application Restrictions

High reliability applications such as military/aerospace, automotive safety/security systems, and medical equipment may require different product. If you have any concerns, please contact Everlight before using this product in your application. This specification guarantees the quality and performance of the product as an individual component. Do not use this product beyond the specification described in this document.